Bishop's property (β), hypercyclicity and hyperinvariant subspaces
نویسندگان
چکیده
منابع مشابه
Bishop ’ S Property ( Β ) , Hypercyclicity and Hyperinvariant Subspaces
The question whether every operator on H has an hyperinvariant subspace is one of the most difficult problems in operator theory. The purpose of this paper is to make a beginning on the hyperinvariant subspace problems for another class of operators closely related to the normal operators namely, the class of k -quasi-class A operators. A necessary and sufficient condition for the hypercyclicit...
متن کاملHyperinvariant subspaces and quasinilpotent operators
For a bounded linear operator on Hilbert space we define a sequence of the so-called weakly extremal vectors. We study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors. Also we show that any quasinilpotent operator $T$ has an hypernoncyclic vector, and so $T$ has a nontrivial hyperinvariant subspace.
متن کاملHyperinvariant subspaces and extended eigenvalues
An extended eigenvalue for an operator A is a scalar λ for which the operator equation AX = λXA has a nonzero solution. Several scenarios are investigated where the existence of non-unimodular extended eigenvalues leads to invariant or hyperinvariant subspaces. For a bounded operator A on a complex Hilbert space H, the set EE(A) of extended eigenvalues for A is defined to be the set of those co...
متن کاملHyperinvariant Subspaces for Some Subnormal Operators
In this article we employ a technique originated by Enflo in 1998 and later modified by the authors to study the hyperinvariant subspace problem for subnormal operators. We show that every “normalized” subnormal operator S such that either {(S∗nSn)1/n} does not converge in the SOT to the identity operator or {(SnS∗n)1/n} does not converge in the SOT to zero has a nontrivial hyperinvariant subsp...
متن کاملHyperinvariant Subspaces for Some B–circular Operators
We show that if A is a Hilbert–space operator, then the set of all projections onto hyperinvariant subspaces of A, which is contained in the von Neumann algebra vN(A) that is generated by A, is independent of the representation of vN(A), thought of as an abstract W∗–algebra. We modify a technique of Foias, Ko, Jung and Pearcy to get a method for finding nontrivial hyperinvariant subspaces of ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2014
ISSN: 1846-3886
DOI: 10.7153/oam-08-28